A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
نویسندگان
چکیده
We address the problem of online path planning for optimal sensing with a mobile robot. The objective of the robot is to learn the most about its pose and the environment given time constraints. We use a POMDP with a utility function that depends on the belief state to model the finite horizon planning problem. We replan as the robot progresses throughout the environment. The POMDP is highdimensional, continuous, non-differentiable, nonlinear, nonGaussian and must be solved in real-time. Most existing techniques for stochastic planning and reinforcement learning are therefore inapplicable. To solve this extremely complex problem, we propose a Bayesian optimization method that dynamically trades off exploration (minimizing uncertainty in unknown parts of the policy space) and exploitation (capitalizing on the current best solution). We demonstrate our approach with a visually-guide mobile robot. The solution proposed here is also applicable to other closelyrelated domains, including active vision, sequential experimental design, dynamic sensing and calibration with mobile sensors.
منابع مشابه
Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملSensor Planning and Bayesian Network Structure Learning for Mobile Robot Localization
In this paper we propose a novel method of sensor planning for a mobile robot localization problem. We represent causal relation between local sensing results, actions, and belief of the global localization using a Bayesian network. Initially, the structure of the Bayesian network is learned from the complete data of the environment using K2 algorithm combined with GA (genetic algorithm). In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Auton. Robots
دوره 27 شماره
صفحات -
تاریخ انتشار 2009